
The Shortest Path ProblemThe Shortest Path Problem

111111Cpt S 223. School of EECS, WSU

Shortest-Path Algorithms
 Find the “shortest” path

from point A to point B
 “Shortest” in time,

distance, cost, …
 Numerous applications Numerous applications

 Map navigation
 Flight itineraries
 Circuit wiring
 Network routing

22222Cpt S 223. School of EECS, WSU

Shortest Path Problems

Weighted graphs:
 Input is a weighted graph where each edge (vi,vj) p g g p g (i, j)

has cost ci,j to traverse the edge
 Cost of a path v1v2…vN is 






1

1
1,

N

i
iic

 Goal: to find a smallest cost path

Unweighted graphs:
 Input is an unweighted graph

 i.e., all edges are of equal weight
Goal: to find a path with smallest number of hops 3Cpt S 223. School of EECS, WSU

Shortest Path Problems

Single-source shortest path problem
 Given a weighted graph G=(V,E), and a Given a weighted graph G (V,E), and a

source vertex s, find the minimum weighted
path from s to every other vertex in G

Weighted:
Some algorithms:

s: source

Dijkstra’s algo

Unweighted:
Simple BFS

4

Simple BFS

Cpt S 223. School of EECS, WSU

Point to Point SP problem

Given G(V,E) and two vertices A and B,
find a shortest path from A (source) to p ()
B (destination).

Solution:
1) Run the code for Single Source1) Run the code for Single Source
Shortest Path using source as A.
2) Stop algorithm when B is reached.2) Stop algorithm when B is reached.

5Cpt S 223. School of EECS, WSU

All Pairs Shortest Path
Problem
Given G(V,E), find a shortest path between all

pairs of vertices.

Solutions:
(brute-force)(brute force)

Solve Single Source Shortest Path for
each vertex as source

There are more efficient ways of solving this
problem (e.g., Floyd-Warshall algo).problem (e.g., Floyd Warshall algo).

6Cpt S 223. School of EECS, WSU

Negative Weights
 Graphs can have negative

weights
 E.g., arbitrage

 Shortest positive-weight path is a
net gain

 Path may include individual losses

 Problem: Negative weight cycles
Allow arbitrarily low path costs Allow arbitrarily-low path costs

 Solution
 Detect presence of negative-weight p g g

cycles

7Cpt S 223. School of EECS, WSU

Unweighted Shortest Paths

 No weights on edges
 Find shortest length paths Find shortest length paths
 Same as weighted shortest path with all

weights equalweights equal
 Breadth-first search 1 2

source
0 2 3

O(|E| + |V|)

8
1 3

O(|E| + |V|)

Cpt S 223. School of EECS, WSU

Unweighted Shortest Paths

 For each vertex, keep track of
 Whether we have visited it (known) Whether we have visited it (known)
 Its distance from the start vertex (dv)
 Its predecessor vertex along the shortest Its predecessor vertex along the shortest

path from the start vertex (pv)

9Cpt S 223. School of EECS, WSU

Unweighted Shortest Paths
Solution 1: Repeatedly iterate
through vertices, looking for
unvisited vertices at current
distance from start vertex s.

Running time: O(|V|2)

10Cpt S 223. School of EECS, WSU

Unweighted Shortest Paths

Solution: Ignore vertices that have
already been visited by keeping only y y p g y
unvisited vertices (distance = ∞) on
the queue.

R i ti O(|E|+|V|)Running time: O(|E|+|V|)

source

11
Queue: v3 v1, v6 v2, v4 v7, v5Cpt S 223. School of EECS, WSU

Unweighted Shortest Paths

12Cpt S 223. School of EECS, WSU

Weighted Shortest Paths
 Dijkstra’s algorithm

 GREEDY strategy:
 Always pick the next closest vertex to the source

 Use priority queue to store unvisited vertices by
distance from sdistance from s

 After deleteMin v, update distances of remaining
vertices adjacent to v using decreaseKey

 Does not work with negative weights

13Cpt S 223. School of EECS, WSU

Dijkstra’s Algorithm

14Cpt S 223. School of EECS, WSU

source

Dijkstra

15Cpt S 223. School of EECS, WSU

BuildHeap: O(|V|)

DeleteMin: O(|V| log |V|)

DecreaseKey: O(|E| log |V|)

16
Total running time: O(|E| log |V|)

Cpt S 223. School of EECS, WSU

Why Dijkstra Works

 Hypothesis
 A least-cost path from X to Y contains

This is called the “Optimal Substructure” property

 A least cost path from X to Y contains
least-cost paths from X to every city on the
path to Y

 E.g., if XC1C2C3Y is the least-cost
path from X to Y, then
 XC1C2C3 is the least-cost path from X to C3
 XC1C2 is the least-cost path from X to C2
 XC1 is the least-cost path from X to C1

A B20

10100
100

 XC1 is the least cost path from X to C1

17

D C
10

100

Cpt S 223. School of EECS, WSU

Why Dijkstra Works
X C

Y
 PROOF BY CONTRADICTION:
 Assume hypothesis is false

Y
P’

 I.e., Given a least-cost path P from X to Y that goes through
C, there is a better path P’ from X to C than the one in P

 Show a contradictionS o a co t ad ct o
 But we could replace the subpath from X to C in P with this

lesser-cost path P’
 The path cost from C to Y is the same The path cost from C to Y is the same
 Thus we now have a better path from X to Y
 But this violates the assumption that P is the least-cost path

from X to Yfrom X to Y

 Therefore, the original hypothesis must be true
18Cpt S 223. School of EECS, WSU

Printing Shortest Paths

19Cpt S 223. School of EECS, WSU

What about graphs with
negative edges?

 Will the O(|E| log|V|) Dijkstra’s
algorithm work as is?algorithm work as is?

deleteMin Updates to dist

V V di t 3

v1

v23
21

source
V1 V2.dist = 3

V2 V4.dist = 4, V3.dist = 5

V4 No change

V No change and so v dist will

-10v4 v3
V3 No change and so v4. dist will

remain 4.
Correct answer: v4.dist should
be updated to -5Solution:

Do not mark any vertex as “known”.
Instead allow multiple updates.

20Cpt S 223. School of EECS, WSU

Negative Edge Costs
Running time: O(|E|·|V|)

v3source

v1

v4

v2

v3

3
21

-10

V1

Queue

V2.dist = 3V1

Updates to distDequeue

V3

V4, V3

V2

V4.dist = -5V3

V4.dist = 4, V3.dist = 5 V2

No updatesV4

21

No updatesV4V4

Cpt S 223. School of EECS, WSU

Negative Edge Costs

Running time: O(|E|·|V|)

Negative weight cycles?g g y

2222Cpt S 223. School of EECS, WSU

Shortest Path Problems
 Unweighted shortest-path problem: O(|E|+|V|)
 Weighted shortest-path problem

 No negative edges: O(|E| log |V|)
 Negative edges: O(|E|·|V|)

 Acyclic graphs: O(|E|+|V|) Acyclic graphs: O(|E|+|V|)
 No asymptotically faster algorithm for single-

source/single-destination shortest path problem

2323Cpt S 223. School of EECS, WSU

C E l ti Sit iCourse Evaluation Site in now
Open!Open!

http://skylight wsu edu/s/053eadf6-6157-44ce-http://skylight.wsu.edu/s/053eadf6-6157-44ce-
92ad-cbc26bde3b53.srv

24Cpt S 223. School of EECS, WSU

