The Shortest Path Problem

Shortest-Path Algorithms

- Find the "shortest" path from point A to point B
- "Shortest" in time, distance, cost, ...
- Numerous applications
 - Map navigation
 - Flight itineraries
 - Circuit wiring
 - Network routing

Shortest Path Problems

Weighted graphs:

- Input is a weighted graph where each edge (v_i,v_j) has cost c_{i,i} to traverse the edge
- Cost of a path $v_1 v_2 \dots v_N$ is $\sum_{i=1}^{N-1} c_{i,i+1}$
- Goal: to find a smallest cost path

Unweighted graphs:

Input is an unweighted graph

⇒ i.e., all edges are of equal weight

Goal: to find a parthavitmos mathests number of hops 3

Shortest Path Problems

Single-source shortest path problem

 Given a weighted graph G=(V,E), and a source vertex s, find the minimum weighted path from s to every other vertex in G

Point to Point SP problem

Given G(V,E) and two vertices A and B, find a shortest path from A (source) to B (destination).

Solution:

 Run the code for Single Source Shortest Path using source as A.
 Stop algorithm when B is reached.

All Pairs Shortest Path Problem

Given G(V,E), find a shortest path between all pairs of vertices.

Solutions:

(brute-force)

Solve Single Source Shortest Path for each vertex as source

There are more efficient ways of solving this problem (e.g., Floyd-Warshall algo).

Negative Weights

- Graphs can have negative weights
- E.g., arbitrage
 - Shortest positive-weight path is a net gain

- Path may include individual losses
- Problem: Negative weight cycles
 - Allow arbitrarily-low path costs
- Solution
 - Detect presence of negative-weight cycles

- No weights on edges
- Find shortest length paths
- Same as weighted shortest path with all weights equal

source (v_3)

 v_1

 v_6

Breadth-first search

Cpt S 223. School of EECS, WSU

Ο

 v_5

3

 v_2

2

V7

 v_4

- For each vertex, keep track of
 - Whether we have visited it (known)
 - Its distance from the start vertex (d_{ν})
 - Its predecessor vertex along the shortest path from the start vertex (p_{ν})


```
void Graph::unweighted( Vertex s )
                                            Solution 1: Repeatedly iterate
   for each Vertex v
                                            through vertices, looking for
                                            unvisited vertices at current
       v.dist = INFINITY;
       v.known = false;
                                            distance from start vertex s.
    }
                                            Running time: O(|V|^2)
   s.dist = 0;
   for( int currDist = 0; currDist < NUM VERTICES; currDist++ )</pre>
       for each Vertex v
           if( !v.known && v.dist == currDist )
           {
               v.known = true;
               for each Vertex w adjacent to v
                   if( w.dist == INFINITY )
                   {
                      w.dist = currDist + 1;
                      w.path = v;
                   }
           }
                              Cpt S 223. School of EECS, WSU
```

void Graph::unweighted(Vertex s)

Queue<Vertex> q;

```
for each Vertex v
    v.dist = INFINITY;
```

```
s.dist = 0;
q.enqueue( s );
```

}

}

```
while( !q.isEmpty( ) )
{
    Vertex v = q.dequeue( );
```

```
for each Vertex w adjacent to v
```

```
if( w.dist == INFINITY )
{
```

w.dist = v.dist + 1; w.path = v;

q.enqueue(w);

<u>Solution:</u> Ignore vertices that have already been visited by keeping only unvisited vertices (distance = ∞) on the queue.

```
Running time: O(|E|+|V|)
```


 v_4

 v_2

V7

 v_5

 v_1

 v_6

 v_3

	Initial State			v ₃ Dequeued			v_1 Dequeued			v ₆ Dequeued			
ν	known	d_{v}	p_{ν}	known	d_{v}	p_{v}	known	d_v	p_{ν}	known	d _v	pν	
v ₁	F	∞	0	F	1	v ₃	Т	1	v ₃	Т	1	v ₃	
v ₂	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1	
v ₃	F	0	0	Т	0	0	Т	0	0	Т	0	0	
v ₄	F	∞	0	F	∞	0	F	2	v_1	F	2	v_1	
v ₅	F	∞	0	F	∞	0	F	∞	0	F	∞	0	
v ₆	F	∞	0	F	1	v ₃	F	1	v ₃	Т	1	v ₃	
v ₇	F	∞	0	F	∞	0	F	∞	0	F	∞	0	
Q:		v ₃			<i>v</i> ₁ , <i>v</i> ₆			v_6, v_2, v_4			v ₂ , v ₄		
	v_2 Dequeued			v ₄ Dequeued			v ₅ Dequeued			v ₇ Dequeued			
ν	known	d_v	p_{ν}	known	d_{v}	p_{v}	known	d_v	p_{ν}	known	d_v	p_{ν}	
v ₁	Т	1	v ₃	Т	1	v ₃	Т	1	v ₃	Т	1	v ₃	
v ₂	Т	2	v_1	Т	2	v_1	Т	2	v_1	Т	2	v_1	
v ₃	Т	0	0	Т	0	0	Т	0	0	Т	0	0	
v ₄	F	2	v_1	Т	2	v_1	Т	2	v_1	Т	2	v_1	
v ₅	F	3	v_2	F	3	v_2	Т	3	v_2	Т	3	v_2	
v_6	Т	1	v ₃	Т	1	v_3	Т	1	v ₃	Т	1	v ₃	
v ₇	F	∞	0	F	3	v_4	F	3	v_4	Т	3	v_4	
Q:	v_4, v_5			v ₅ , v ₇			v ₇			empty			

- Dijkstra's algorithm
 - GREEDY strategy:
 - Always pick the next closest vertex to the source
 - Use priority queue to store unvisited vertices by distance from s
 - After deleteMin v, update distances of remaining vertices adjacent to v using decreaseKey
 - Does not work with negative weights

Dijkstra's Algorithm

```
/**
```

```
* PSEUDOCODE sketch of the Vertex structure.
 * In real C++, path would be of type Vertex *,
 * and many of the code fragments that we describe
 * require either a dereferencing * or use the
 * -> operator instead of the . operator.
 * Needless to say, this obscures the basic algorithmic ideas.
 */
struct Vertex
   List
                     // Adjacency list
             adj;
    boo1
             known;
   DistType
                     // DistType is probably int
             dist;
             path; // Probably Vertex *, as mentioned above
   Vertex
       // Other data and member functions as needed
};
```



```
void Graph::dijkstra( Vertex s )
{
    for each Vertex v
       v.dist = INFINITY;
       v.known = false;
    }
                                                              BuildHeap: O(|V|)
    s.dist = 0;
    for(;;)
    {
       Vertex v = smallest unknown distance vertex;
       if( v == NOT A VERTEX )
                                                              DeleteMin: O(|V| log |V|)
            break;
       v.known = true;
        for each Vertex w adjacent to v
            if( !w.known )
                if( v.dist + cvw < w.dist )</pre>
                {
                    // Update w
                                                              DecreaseKey: O(|E| log |V|)
                    decrease( w.dist to v.dist + cvw );
                    w.path = v_{i}
                }
    }
                                 Cpt S 223. School of EECS, WSU O(|E| log |V|)
                                                                                          16
}
```

Why Dijkstra Works

Hypothesis This is called the "Optimal Substructure" property

- A least-cost path from X to Y contains least-cost paths from X to every city on the path to Y
- E.g., if X→C1→C2→C3→Y is the least-cost path from X to Y, then
 - $X \rightarrow C1 \rightarrow C2 \rightarrow C3$ is the least-cost path from X to C3
 - $X \rightarrow C1 \rightarrow C2$ is the least-cost path from X to C2
 - $X \rightarrow C1$ is the least-cost path from X to C1

Why Dijkstra Works

PROOF BY CONTRADICTION:

- Assume hypothesis is false
 - I.e., Given a least-cost path P from X to Y that goes through C, there is a better path P' from X to C than the one in P
- Show a contradiction
 - But we could replace the subpath from X to C in P with this lesser-cost path P'
 - The path cost from C to Y is the same
 - Thus we now have a better path from X to Y
 - But this violates the assumption that P is the least-cost path from X to Y
- Therefore, the original hypothesis must be true Cpt S 223. School of EECS, WSU

Printing Shortest Paths

```
/**
 * Print shortest path to v after dijkstra has run.
 * Assume that the path exists.
 */
void Graph::printPath( Vertex v )
{
    if( v.path != NOT_A_VERTEX )
    {
        printPath( v.path );
        cout << " to ";</pre>
    cout << v;
}
```

What about graphs with negative edges?

Will the O(|E| log|V|) Dijkstra's algorithm work as is?

deleteMin	Updates to dist				
V ₁	$V_2.dist = 3$				
V ₂	$V_4.dist = 4$, $V_3.dist = 5$				
V ₄	No change				
V ₃	No change and so v_4 . dist will remain 4.				
	Correct answer: v_4 .dist should be updated to -5				

Solution:

Do not mark any vertex as "known".

Instead allow multiple updates.

Negative Edge Costs

```
void Graph::weightedNegative( Vertex s )
```

Queue<Vertex> q;

```
for each Vertex v
    v.dist = INFINITY;
```

```
s.dist = 0;
q.enqueue( s );
```

}

}

}

```
while( !q.isEmpty( ) )
{
```

```
Vertex v = q.dequeue( );
```

Running time: O(|E|·|V|)

Queue	Dequeue	Updates to dist
V ₁	V ₁	V_2 .dist = 3
V ₂	V ₂	V_4 .dist = 4, V_3 .dist = 5
V ₄ , V ₃	V_4	No updates
V ₃	V ₃	$V_4.dist = -5$
V ₄	V ₄	No updates

```
Cpt S 223. School of EECS, WSU
```

Negative Edge Costs

```
void Graph::weightedNegative( Vertex s )
{
```

Queue<Vertex> q;

```
for each Vertex v
    v.dist = INFINITY;
```

```
s.dist = 0;
q.enqueue( s );
```

}

```
while( !q.isEmpty( ) )
{
```

```
Vertex v = q.dequeue( );
```

w.path = v;

```
for each Vertex w adjacent to v
    if( v.dist + cvw < w.dist )
    {
        // Update w</pre>
```

w.dist = v.dist + cvw;

q.enqueue(w);

if(w is not already in q)

Running time: $O(|E| \cdot |V|)$

Shortest Path Problems

- Unweighted shortest-path problem: O(|E|+|V|)
- Weighted shortest-path problem
 - No negative edges: O(|E| log |V|)
 - Negative edges: O(|E|·|V|)
- Acyclic graphs: O(|E|+|V|)
- No asymptotically faster algorithm for singlesource/single-destination shortest path problem

Course Evaluation Site in now Open!

http://skylight.wsu.edu/s/053eadf6-6157-44ce-92ad-cbc26bde3b53.srv