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Shortest-Path Algorithms
 Find the “shortest” path 

from point A to point B
 “Shortest” in time, 

distance, cost, …
 Numerous applications Numerous applications

 Map navigation
 Flight itineraries
 Circuit wiring
 Network routing
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Shortest Path Problems

Weighted graphs:
 Input is a weighted graph where each edge (vi,vj) p g g p g ( i, j)

has cost ci,j to traverse the edge
 Cost of a path v1v2…vN is 
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 Goal: to find a smallest cost path

Unweighted graphs:
 Input is an unweighted graph 

 i.e., all edges are of equal weight
Goal: to find a path with smallest number of hops 3Cpt S 223. School of EECS, WSU



Shortest Path Problems

Single-source shortest path problem
 Given a weighted graph G=(V,E), and a Given a weighted graph G (V,E), and a 

source vertex s, find the minimum weighted 
path from s to every other vertex in G

Weighted:
Some algorithms:

s: source

Dijkstra’s algo

Unweighted:
Simple BFS
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Simple BFS
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Point to Point SP problem

Given G(V,E) and two vertices A and B, 
find a shortest path from A (source) to p ( )
B (destination).

Solution:
1) Run the code for Single Source1) Run the code for Single Source 
Shortest Path using source as A.
2) Stop algorithm when B is reached.2) Stop algorithm when B is reached.
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All Pairs Shortest Path 
Problem
Given G(V,E), find a shortest path between all 

pairs of vertices.

Solutions:
(brute-force)(brute force)

Solve Single Source Shortest Path for 
each vertex as source

There are more efficient ways of solving this 
problem (e.g., Floyd-Warshall algo).problem (e.g., Floyd Warshall algo).
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Negative Weights
 Graphs can have negative 

weights
 E.g., arbitrage

 Shortest positive-weight path is a 
net gain

 Path may include individual losses

 Problem: Negative weight cycles
Allow arbitrarily low path costs Allow arbitrarily-low path costs

 Solution
 Detect presence of negative-weight p g g

cycles
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Unweighted Shortest Paths

 No weights on edges
 Find shortest length paths Find shortest length paths
 Same as weighted shortest path with all 

weights equalweights equal
 Breadth-first search 1 2

source
0 2 3

O(|E| + |V|)
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O(|E| + |V|)
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Unweighted Shortest Paths

 For each vertex, keep track of
 Whether we have visited it (known) Whether we have visited it (known)
 Its distance from the start vertex (dv)
 Its predecessor vertex along the shortest Its predecessor vertex along the shortest 

path from the start vertex (pv)
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Unweighted Shortest Paths
Solution 1: Repeatedly iterate 
through vertices, looking for 
unvisited vertices at current 
distance from start vertex s.

Running time: O(|V|2)
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Unweighted Shortest Paths

Solution: Ignore vertices that have 
already been visited by keeping only y y p g y
unvisited vertices (distance = ∞) on 
the queue.

R i ti O(|E|+|V|)Running time: O(|E|+|V|)

source
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Unweighted Shortest Paths
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Weighted Shortest Paths
 Dijkstra’s algorithm

 GREEDY strategy:
 Always pick the next closest vertex to the source

 Use priority queue to store unvisited vertices by 
distance from sdistance from s

 After deleteMin v, update distances of remaining 
vertices adjacent to v using decreaseKey

 Does not work with negative weights
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Dijkstra’s Algorithm
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source

Dijkstra
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BuildHeap: O(|V|)

DeleteMin: O(|V| log |V|)

DecreaseKey: O(|E| log |V|)
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Total running time: O(|E| log |V|)
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Why Dijkstra Works

 Hypothesis
 A least-cost path from X to Y contains

This is called the “Optimal Substructure” property

 A least cost path from X to Y contains 
least-cost paths from X to every city on the 
path to Y

 E.g., if XC1C2C3Y is the least-cost 
path from X to Y, then
 XC1C2C3 is the least-cost path from X to C3
 XC1C2 is the least-cost path from X to C2
 XC1 is the least-cost path from X to C1

A B20
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 XC1 is the least cost path from X to C1
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Why Dijkstra Works
X C

Y
 PROOF BY CONTRADICTION:
 Assume hypothesis is false

Y
P’

 I.e., Given a least-cost path P from X to Y that goes through 
C, there is a better path P’ from X to C than the one in P

 Show a contradictionS o a co t ad ct o
 But we could replace the subpath from X to C in P with this 

lesser-cost path P’
 The path cost from C to Y is the same The path cost from C to Y is the same
 Thus we now have a better path from X to Y
 But this violates the assumption that P is the least-cost path 

from X to Yfrom X to Y

 Therefore, the original hypothesis must be true
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Printing Shortest Paths
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What about graphs with 
negative edges?

 Will the O(|E| log|V|) Dijkstra’s 
algorithm work as is?algorithm work as is?

deleteMin Updates to dist

V V di t 3

v1

v23
21

source
V1 V2.dist = 3

V2 V4.dist = 4, V3.dist = 5 

V4 No change

V No change and so v dist will

-10v4 v3
V3 No change and so v4. dist will 

remain 4.
Correct answer: v4.dist should 
be updated to -5Solution:

Do not mark any vertex as “known”. 
Instead allow multiple updates.
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Negative Edge Costs
Running time: O(|E|·|V|)

v3source

v1

v4

v2

v3

3
21

-10

V1

Queue

V2.dist = 3V1

Updates to distDequeue

V3

V4, V3

V2

V4.dist = -5V3

V4.dist = 4, V3.dist = 5 V2

No updatesV4

21

No updatesV4V4
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Negative Edge Costs

Running time: O(|E|·|V|)

Negative weight cycles?g g y
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Shortest Path Problems
 Unweighted shortest-path problem: O(|E|+|V|)
 Weighted shortest-path problem

 No negative edges: O(|E| log |V|)
 Negative edges: O(|E|·|V|)

 Acyclic graphs: O(|E|+|V|) Acyclic graphs: O(|E|+|V|)
 No asymptotically faster algorithm for single-

source/single-destination shortest path problem
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C E l ti Sit iCourse Evaluation Site in now 
Open!Open!

http://skylight wsu edu/s/053eadf6-6157-44ce-http://skylight.wsu.edu/s/053eadf6-6157-44ce-
92ad-cbc26bde3b53.srv
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