!'_ The Shortest Path Problem

Cpt S 223. School of EECS, WSU

Shortest-Path Algorithms

= Find the “shortest” path
from point A to point B

s “Shortest” in time,
distance, cost, ...

= Numerous applications

= Map navigation
= Flight itineraries

= Circuit wiring
= Network routing

Cpt S 223.

il X \& L ——
4, q% EN ,f%
N & 2
RN o 2
% i
‘o
Vo
iy)
Stap. at 0@&\
s o Janer
=
£
(B
Nw Darrow St § o
=] @
= N
= L) o
N True St wia
N Sunset Or E v e z\,a‘*ﬂ e
st w
biw Webls 8 gl: % g
N Windus St %,z& E § F
y 220
=
=
*
Merilndog st @“G‘P %C :J‘;" Ne Shayw 5t
o5 2 ot
& . 7 £ g
, o
Now Park St Q“;’ %% & Yy B
i & % _
Blue Mormtain g ‘,52“\9 e 3 .,
e A e I\
il Oy 0, Pullman E
- 3 5 %'9 e Rean é
e ,, o 74 Lot £
.r;;&? s bses‘ 3
W
é?‘"@ PEmanst 2) 2
It & FSePamdsest o R R e Colege st
f S R o
= S=Rolumbia St
Se Mckenzio 51 = g “& : & Cole P
@ = & ot
B s g 52>
% f Se Jacksan st B, 7N Q‘i’iq%e E‘\e
3 : b W %
E | Sesoutisy f “ #E Wb \,ﬁ% G| seoymp
ot 3 T M D3 Zor NAVTED [oaTeieAee]

82008 MapQies! Inc.

School of EECS, WSU

i Shortest Path Problems

Weighted graphs:

= Input is a weighted graph where each edge (v;,v))
has cost ¢;; to traverse the edge

= Cost of a path v,v,...vyis 26w
= Goal: to find a smallest cost path

Unweighted graphs:
= Input is an unweighted graph
- l.e., all edges are of equal weight
Goal: to find a patieavHirgmaiessnumber of hops 3

i Shortest Path Problems

Single-source shortest path problem

= Given a weighted graph G=(V,E), and a
source vertex s, find the minimum weighted
path from s 7o every other vertexin G

Some algorithms:

Weighted:
Dijkstra’s algo

S: source Unweighted:

Simple BFS

Cpt S 223. School of EECS, WSU 4

i Point to Point SP problem

Given G(V,E) and two vertices A and B,
find a shortest path from A (source) to
B (destination).

Solution:

1) Run the code for Single Source
Shortest Path using source as A.

2) Stop algorithm when B Is reached.

Cpt S 223. School of EECS, WSU

All Pairs Shortest Path

i Problem

Given G(V,E), find a shortest path between all
pairs of vertices.

Solutions:

(brute-force)

Solve Single Source Shortest Path for
each vertex as source

There are more efficient ways of solving this
problem (e.g., Floyd-Warshall algo).

Cpt S 223. School of EECS, WSU

Negative Weights

= Graphs can have negative
weights
= E.g., arbitrage
= Shortest positive-weight path is a
net gain
= Path may include individual losses
= Problem: Negative weight cycles
= Allow arbitrarily-low path costs

= Solution

= Detect presence of negative-weight
cycles

Cpt S 223. School of EECS, WSU 7

i Unweighted Shortest Paths

= No weights on edges
= Find shortest length paths

= Same as weighted shortest path with all
welights equal \
= Breadth-first search \ -~

source

O(IE| + [VI)

Cpt S 223. School of EECS, WSU

i Unweighted Shortest Paths

= For each vertex, keep track of
= Whether we have visited it (known)
= Its distance from the start vertex (d))

= Its predecessor vertex along the shortest
path from the start vertex (p,)

known d,

=
i
ey s B s B v v

oo oo o oo |3

B 338083

Cpt S 223. Schodl of EEES, W

Unweighted Shortest Paths

void Graph::unweighted(Vertex s)

{

Solution 1: Repeatedly iterate

for each Vertex v

{ through vertices, looking for

v.dist = INFINITY; unvisited vertices at current
} v.known = false; distance from start vertex s.
s.dist = 0; Running time: O(|V/|?)

for(int currDist = 0; currDist < NUM_VERTICES; currDist++)
for each Vertex v
if(!v.known && v.dist == currDist)
{
v.known = true;
for each Vertex w adjacent to v
if(w.dist == INFINITY)
{

w.dist = currDist + 1;
w.path = v;

Cpt S 223. School of EECS, WSU

10

Unweighted Shortest Paths

void Graph::unweighted(Vertex s)

{

Queue<Vertex> q;
Solution: Ignore vertices that have

for each Vertex v already been visited by keeping only
v.dist = INFINITY;
unvisited vertices (distance = «) on
s.dist = 03 the queue.

q.enqueue(s);

Running time: O(|E|+|V|)

while(!q.isEmpty())
{

Vertex v = q.dequeue();

for each Vertex w adjacent to v
if(w.dist == INFINITY)
{

w.dist = v.dist + 1; source

w.path = v;
q.enqueue(w);

Queue: V3\Jv Vi, V6‘ Vs, V4‘ V7, Vs

} Cpt S 223. School of EECS, WSU 11

Unweighted Shortest Paths

Initial State

v3 Dequeued

v Dequeued

ve Dequeued

v known d, py known d, p, known d, p, known d, p,
vy F 00 0 F 1 Vs T 1 V3 T 1 V3
vy F oo 0 F oo 0 F 2 v F 2 v
V3 F 0 0 T 0 0 T 0 0 T 0 0
Vg F oo 0 F co 0 F 2 v F 2 V]
Vs F 00 0 F e’e) 0 F 00 0 F e’e) 0
Vg F 00 0 F 1 V3 F 1 V3 T 1 V3
V7 F 00 0 F e’s) 0 F 00 0 F e’e) 0
Q: V3 V1, Ve V6> V2, V4 V2. V4
v, Dequeued v4 Dequeued vs Dequeued v7 Dequeued
v known d, p, known d, py known d, p, known d, py
T 1 V3 T 1 V3 T 1 V3 T 1 V3
T 2 vy T 2 vy T 2 2 T 2 vy
T 0 0 T 0 0 T 0 0 T 0 0
F 2 vy T 2 vy T 2 2 T 2 vy
F 3 vy F 3 vy T 3 %) T 3 V)
T 1 V3 T 1 V3 T 1 V3 T 1 V3
F 00 0 F 3 Vg F 3 V4 T 3 V4
V4, Vs Vs, V7 vy empty
Cpt S 223. School of EECS, WSU 12

i Weighted Shortest Paths

= Dijkstra’s algorithm

= GREEDY strateqgy:
= Always pick the next closest vertex to the source

= Use priority queue to store unvisited vertices by
distance from s

= After deleteMin v, update distances of remaining
vertices adjacent to v using decreaseKey

= Does not work with negative weights

Cpt S 223. School of EECS, WSU

13

Dijkstra’s Algorithm

/**

*

*

*

*

*

*

*/

{

PSEUDOCODE sketch of the Vertex structure.

In real C++, path would be of type Vertex *,

and many of the code fragments that we describe

require either a dereferencing * or use the

-> operator instead of the . operator.

Needless to say, this obscures the basic algorithmic ideas.

struct Vertex
List adj; // Adjacency list
bool known;

}s

DistType dist; // DistType is probably int
Vertex path; // Probably Vertex *, as mentioned above
// Other data and member functions as needed

Cpt S 223. School of EECS, WSU

14

Dijkstra

source

15

void Graph::dijkstra(Vertex s)
{

for each Vertex v

{
v.dist = INFINITY;
v.known = false;
} BuildHeap: O(|V|)
s.dist = 0;
for(5 3)
{

Vertex v = smallest unknown distance vertex;
if(v == NOT_A_VERTEX)

break;
v.known = true;

DeleteMin: O(|V| log |V|)

for each Vertex w adjacent to v
if(!w.known)
if(v.dist + cvw < w.dist)
{
// Update w

decrease(w.dist to v.dist + cvw); DecreaseKey: O(|E| log |V|)
w.path =

time: O(|E| log |V])

} Cpt S 223. Samol.ll OPEE S, WSU 16

i Why Dijkstra Works

- Hypothesis This is called the “Optimal Substructure” property

= A least-cost path from X to Y contains
least-cost paths from X to every city on the
pathto Y

» E.g., If X2C1-2>C2->C3-2Y is the least-cost

path from X to Y, then
« X2>C1->C2->C3 is the least-cost path from X to C3

20
Qv@ = X>C1->C2 is the least-cost path from X to C2
100 " "« X>C1is the least-cost path from X to C1

) ©

10
Cpt S 223. School of EECS, WSU 17

i Why Dijkstra Works

= PROOF BY CONTRADICTION: P’

= Assume hypothesis is false
= l.e., Given a least-cost path P from X to Y that goes through
C, there is a better path P’ from X to C than the one in P
= Show a contradiction

= But we could replace the subpath from X to C in P with this
lesser-cost path P’

= The path cost from C to Y is the same

= Thus we now have a better path from X to Y

= But this violates the assumption that P is the least-cost path
from XtoY

= Therefore, the original hypothesis must be true
Cpt S 223. School of EECS, WSU 18

Printing Shortest Paths

/**

* Print shortest path to v after dijkstra has run.

* Assume that the path exists.
*/
void Graph::printPath(Vertex v)

{
if(v.path != NOT_A VERTEX)

{
printPath(v.path);
cout << " to u;

}

cout << v;

Cpt S 223. School of EECS, WSU

19

What about graphs with

i negative edges?

= Will the O(]JE| log|V]|) Dijkstra’s

algorithm work as Is?

o
V)5V

Solution:

deleteMin Updates to dist

V, V,.dist = 3

V, V,.dist = 4, V;.dist =5

Vv, No change

Vs No change and so v,. dist will

remain 4.

Correct answer: v,.dist should
be updated to -5

Do not mark any vertex as “known”.

Instead allow multiple updates.
Cpt S 223. School of EECS, WSU

Negative Edge Costs

void Graph::weightedNegative(Vertex s)

{

Running time: O(|E|-|V|)

Queue<Vertex> q;

for each Vertex v

v.dist = INFINITY; source 3 @
s.dist = 0; @/// \a
g.enqueue(s); @
(V<=0

while(!q.isEmpty())
{

Vertex v = g.dequeue()3 Queue Dequeue | Updates to dist
for each Vertex w adjacent to v A V, V2.dist =3
if(v.dist + cvw < w.dist)
{ V, V, V,.dist = 4, V5.dist = 5
// Update w V,, Vs, V, No updates
w.dist = v.dist + cvw; _
w.path = v; Vs Vs V,.dist = -5
if(wis not already in q) v, v, No updates

q.enqueue(w);

} Cpt S 223. School of EECS, WSU

21

Negative Edge Costs

void Graph::weightedNegative(Vertex s)

{

Queue<Vertex> q;

for each Vertex v
v.dist = INFINITY;

s.dist = 0;
g.enqueue(s);

while(!q.isEmpty())
{

Vertex v = g.dequeue();

for each Vertex w adjacent to v
if(v.dist + cvw < w.dist)

{
// Update w
w.dist = v.dist + cvw;
w.path = v;

if(wis not already in q)
q.enqueue(w);

Running time: O(|E|-|V])

Negative weight cycles?

} Cpt S 223. School of EECS, WSU 22

i Shortest Path Problems

= Unweighted shortest-path problem: O(|E|+|V])

= Weighted shortest-path problem
= No negative edges: O(|E| log |V])
= Negative edges: O(|E|-|V])

= Acyclic graphs: O(|E|+|V])

= No asymptotically faster algorithm for single-
source/single-destination shortest path problem

Cpt S 223. School of EECS, WSU

23

+

Course Evaluation Site in now
Open!

http://skylight.wsu.edu/s/053eadf6-6157-44ce-

92ad-cbc26bde3b53.srv

Cpt S 223. School of EECS, WSU

24

