## Linear Programming

brewer's problem
simplex algorithm
implementation

- linear programming


## References:

The Allocation of Resources by Linear Programming,
Scientific American, by Bob Bland
Algs in Java, Part 5

Overview: introduction to advanced topics

## Main topics

- linear programming: the ultimate practical problem-solving model
- reduction: design algorithms, prove limits, classify problems
- NP: the ultimate theoretical problem-solving model
- combinatorial search: coping with intractability


## Shifting gears

- from linear/quadratic to polynomial/exponential scale
- from individual problems to problem-solving models
- from details of implementation to conceptual framework


## Goals

- place algorithms we've studied in a larger context
- introduce you to important and essential ideas
- inspire you to learn more about algorithms!


## Linear Programming

## What is it?

- Quintessential tool for optimal allocation of scarce resources, among a number of competing activities.
- Powerful and general problem-solving method that encompasses: shortest path, network flow, MST, matching, assignment... $A x=b, 2$-person zero sum games


## Why significant?

- Widely applicable problem-solving model
- Dominates world of industry.
- Fast commercial solvers available: CPLEX, OSL.
- Powerful modeling languages available: AMPL, GAMS.
- Ranked among most important scientific advances of $20^{\text {th }}$ century.


## Applications

Agriculture. Diet problem.
Computer science. Compiler register allocation, data mining.
Electrical engineering. VLSI design, optimal clocking.
Energy. Blending petroleum products.
Economics. Equilibrium theory, two-person zero-sum games.
Environment. Water quality management.
Finance. Portfolio optimization.
Logistics. Supply-chain management.
Management. Hotel yield management.
Marketing. Direct mail advertising.
Manufacturing. Production line balancing, cutting stock.
Medicine. Radioactive seed placement in cancer treatment.
Operations research. Airline crew assignment, vehicle routing.
Physics. Ground states of 3-D Ising spin glasses.
Plasma physics. Optimal stellarator design.
Telecommunication. Network design, Internet routing.
Sports. Scheduling ACC basketball, handicapping horse races.
> brewer's problem
simplex algorithm
implementation
> linear programming

Toy LP example: Brewer's problem

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

|  | corn (lbs) | hops (oz) | malt (lbs) | profit (\$) |
| :---: | :---: | :---: | :---: | :---: |
| available | 480 | 160 | 1190 |  |
| ale (1 barrel) | 5 | 4 | 35 | 13 |
| beer (1 barrel) | 15 | 4 | 20 | 23 |

Brewer's problem: choose product mix to maximize profits.

| all ale <br> (34 barrels) | 179 | 136 | 1190 | 442 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| all beer <br> (32 barrels) <br> 20 barrels ale <br> 20 barrels beer <br> 12 barrels ale <br> 28 barrels beer | 480 | 128 | 640 | 736 | 34 barrels times 35 lbs malt <br> per barrel is 1190 lbs <br> amount of available malt ] |
| more profitable <br> product mix? | 480 | 160 | 980 | 800 |  |

Brewer's problem: mathematical formulation

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.


## Mathematical formulation

- let $A$ be the number of barrels of beer
- and $B$ be the number of barrels of ale

|  | ale |  | beer |  |  | profit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| maximize | 13A | + | 23B |  |  |  |
| subject | 5A | + | 15B | $\leq$ | 480 | corn |
| to the | 4A | + | 4B | $\leq$ | 160 | hops |
| constraints | 35A | + | 20B | $\leqslant$ | 1190 | malt |
|  |  |  | A | $\geq$ | 0 |  |
|  |  |  | B | $\geq$ | 0 |  |



Brewer's problem: Feasible region


Brewer's problem: Objective function


Brewer's problem: Geometry

Brewer's problem observation. Regardless of objective function coefficients, an optimal solution occurs at an extreme point.


## Standard form linear program

Input: real numbers $a_{i j}, c_{j}, b_{i}$.
Output: real numbers $x_{j}$.
$n=\#$ nonnegative variables, $m=\#$ constraints.
Maximize linear objective function subject to linear equations.
$n$ variables

## maximize

subject to the constraints

$$
C_{1} X_{1}+C_{2} X_{2}+\ldots+c_{n} X_{n}
$$


matrix version

| maximize | $c^{\top} x$ |
| :---: | :---: |
| subject to the | $A x=b$ |
| constraints | $x \geq 0$ |

"Linear"
No $x^{2}, x y, \arccos (x)$, etc.
"Programming" " Planning" (term predates computer programming).

Converting the brewer's problem to the standard form
Original formulation

| maximize | $13 A+23 B$ |
| :---: | :---: |
| subject | $5 A+15 B \leq 480$ |
| to the | $4 A+4 B \leq 160$ |
| constraints $35 A+20 B \leq 1190$ |  |
|  |  |

Standard form

- add variable $Z$ and equation corresponding to objective function
- add slack variable to convert each inequality to an equality.
- now a 5-dimensional problem.



## Geometry

A few principles from geometry:

- inequality: halfplane (2D), hyperplane (kD).
- bounded feasible region: convex polygon (2D), convex polytope (kD).

Convex set. If two points $a$ and $b$ are in the set, then so is $\frac{1}{2}(a+b)$.

Extreme point. A point in the set that can't be written as $\frac{1}{2}(a+b)$, where $a$ and $b$ are two distinct points in the set.


## Geometry (continued)

Extreme point property. If there exists an optimal solution to $(P)$, then there exists one that is an extreme point.

Good news. Only need to consider finitely many possible solutions.

Bad news. Number of extreme points can be exponential!

Ex: n-dimensional hypercube

Greedy property. Extreme point is optimal iff no neighboring extreme point is better.

>brewer's problem
> simplex algorithm
Iimplementation
linear programming

## Simplex Algorithm

Simplex algorithm. [George Dantzig, 1947]

- Developed shortly after WWII in response to logistical problems, including Berlin airlift.
- One of greatest and most successful algorithms of all time.

Generic algorithm.

- Start at some extreme point.
- Pivot from one extreme point to a neighboring one.
- Repeat until optimal.

How to implement? Linear algebra.


## Simplex Algorithm: Basis

Basis. Subset of $m$ of the $n$ variables.

Basic feasible solution (BFS).

- Set $n-m$ nonbasic variables to 0 , solve for remaining $m$ variables.
- Solve $m$ equations in $m$ unknowns.
- If unique and feasible solution $\Rightarrow B F S$.
- $\mathrm{BFS} \Leftrightarrow$ extreme point.



## Simplex Algorithm: Initialization

Start with slack variables as the basis.

Initial basic feasible solution (BFS).

- set non-basis variables $A=0, B=0$ (and $Z=0$ ).
- 3 equations in 3 unknowns give $S_{C}=480, S_{C}=160, S_{C}=1190$ (immediate).
- extreme point on simplex: origin



## Simplex Algorithm: Pivot 1



$$
\begin{gathered}
\text { basis }=\left\{S_{C}, S_{H}, S_{M}\right\} \\
A=B=0 \\
Z=0 \\
S_{C}=480 \\
S_{H}=160 \\
S_{M}=1190
\end{gathered}
$$

Substitution $B=(1 / 15)\left(480-5 A-S_{C}\right)$ puts $B$ into the basis

which variable does it replace? ( rewrite ind equation, eliminate $B$ in 1st, 3rd, and 4th equations)

$$
\begin{gathered}
\text { basis }=\left\{B, S_{H}, S_{M}\right\} \\
A=S_{C}=0 \\
Z=736 \\
B=32 \\
S_{H}=32 \\
S_{M}=550
\end{gathered}
$$

## Simplex Algorithm: Pivot 1



Why pivot on B ?

- Its objective function coefficient is positive (each unit increase in B from 0 increases objective value by $\$ 23$ )
- Pivoting on column 1 also OK.

Why pivot on row 2?

- Preserves feasibility by ensuring RHS $\geq 0$.
- Minimum ratio rule: $\min \{480 / 15,160 / 4,1190 / 20\}$.


## Simplex Algorithm: Pivot 2



Substitution $A=(3 / 8)\left(32+(4 / 15) S_{C}-S_{H}\right)$ puts $A$ into the basis (rewrite 3nd equation, eliminate $A$ in $1 s t$, $2 r d$, and 4 th equations)


$$
\begin{gathered}
\text { basis }=\left\{B, S_{H}, S_{M}\right\} \\
A=S_{C}=0 \\
Z=736 \\
B=32 \\
S_{H}=32 \\
S_{M}=550
\end{gathered}
$$

$$
\begin{aligned}
\text { basis } & =\left\{A, B, S_{M}\right\} \\
S_{C} & =S_{H}=0 \\
Z & =800 \\
B & =28 \\
A & =12 \\
S_{M} & =110
\end{aligned}
$$

## Simplex algorithm: Optimality

Q. When to stop pivoting?
A. When all coefficients in top row are non-positive.
Q. Why is resulting solution optimal?
A. Any feasible solution satisfies system of equations in tableaux.

- In particular: $Z=800-S_{C}-2 S_{H}$
- Thus, optimal objective value $Z^{*} \leq 800$ since $S_{C}, S_{H} \geq 0$.
- Current BFS has value $800 \Rightarrow$ optimal.

| maximize <br> subject to the constraints | Z |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | - | Sc | - |  |  | Z | = | -800 | basis $=\left\{A, B, S_{M}\right\}$ |
|  |  | B |  |  |  |  |  |  |  |  | $S_{C}=S_{H}=0$ |
|  |  |  | + | $(1 / 10) S_{c}$ | + | (1/8) $S_{H}$ |  |  | $=$ | 28 | $Z=800$ |
|  | A |  | - | $(1 / 10) S_{c}$ | + | (3/8) $S_{H}$ |  |  | = | 12 | $B=28$ |
|  |  |  |  |  |  |  |  |  |  |  | $A=12$ |
|  |  |  | - | (25/6) $S_{c}$ | - | $(85 / 8) S_{H}$ | $S_{M}$ |  | - | 110 | $S_{M}=110$ |
|  |  |  |  | A, B, SC, | H, |  |  |  | $\geq$ | 0 |  |

brewer's problem
simplex algorithm
rimplementation
>linear programming

## Simplex tableau

## Encode standard form LP in a single Java 2D array



| 5 | 15 | 1 | 0 | 0 | 480 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 4 | 0 | 1 | 0 | 160 |
| 35 | 20 | 0 | 0 | 1 | 1190 |
| 13 | 23 | 0 | 0 | 0 | 0 |



## Simplex tableau

## Encode standard form LP in a single Java 2D array (solution)



Simplex algorithm transforms initial array into solution

## Simplex algorithm: Bare-bones implementation

Construct the simplex tableau.


```
public class Simplex
{
    private double[][] a; // simplex tableaux
constructor
    private int M, N;
    public Simplex(double[][] A, double[] b, double[] c)
    {
        M = b.length;
        N = c.length;
        a = new double[M+1][M+N+1];
        for (int i = 0; i < M; i++)
            for (int j = O; j < N; j++)
                a[i][j] = A[i][j];
        for (int j = N; j < M + N; j++) a[j-N][j] = 1.0; « put I[] into tableau
        for (int j = 0; j < N; j++) a[M][j] = c[j];\longleftarrow putc[] into tableau
        for (int i=0; i < M; i++) a[i][M+N] = b[i];\longleftarrow putb[] into tableau
    }
```


## Simplex algorithm: Bare-bones Implementation

Pivot on element ( $p, q$ ).

public void pivot(int $p$, int $q$ )
\{ scale all elements but row $p$ and column q

```
    for (int i = 0; i <= M; i++)
        for (int j = 0; j <= M + N; j++) if (i ! \(=\mathrm{p}\) \&\& j ! \(=\mathrm{q}\) ) \(a[i][j]-=a[p][j]\) * \(a[i][q] / a[p][q] ;\)
                        a[i][j] -= a[p][j] * a[i][q] / a[p][q];
```

```
for (int i = 0; i <= M; i++)
```

    if (i ! \(=\) p) a[i][q] \(=0.0\);
    $\longleftarrow$ zero out column q
for (int $j=0 ; j<=M+N ; j++$ )
if (j != q) a[p][j] /= a[p][q];
$\longleftarrow$ scale row $p$
$a[p][q]=1.0$;
\}

## Simplex Algorithm: Bare Bones Implementation


for (p = 0; p < M; p++)
if (a[p][q] > 0) break;
for (int i = p+1; i < M; i++)
if (a[i][q] > 0)
if (a[i][M+N] / a[i][q] to min ratio rule
< a[p][M+N] / a[p][q])
p = i;

```
```

```
public void solve()
```

```
public void solve()
{
{
    while (true)
    while (true)
    {
    {
        int p, q;
        int p, q;
        for (q = 0; q < M + N; q++)
        for (q = 0; q < M + N; q++)
            if (a[M][q] > 0) break;
            if (a[M][q] > 0) break;
            if (q >= M + N) break;
```

            if (q >= M + N) break;
    ```
```

            pivot(p, q);
    }
    }

```
Simplex algorithm.

\section*{Simplex Algorithm: Running Time}

Remarkable property. In practice, simplex algorithm typically terminates after at most \(2(m+n)\) pivots.
- No pivot rule that is guaranteed to be polynomial is known.
- Most pivot rules known to be exponential (or worse) in worst-case.

Pivoting rules. Carefully balance the cost of finding an entering variable with the number of pivots needed.

\section*{Simplex algorithm: Degeneracy}

Degeneracy. New basis, same extreme point.
"stalling" is common in practice


Cycling. Get stuck by cycling through different bases that all correspond to same extreme point.
- Doesn't occur in the wild.
- Bland's least index rule guarantees finite \# of pivots.

\section*{Simplex Algorithm: Implementation Issues}

To improve the bare-bones implementation
- Avoid stalling.
- Choose the pivot wisely.
- Watch for numerical stability.
- Maintain sparsity. « requires fancy data structures
- Detect infeasiblity
- Detect unboundedness.
- Preprocess to reduce problem size.

Basic implementations available in many programming environments.

Commercial solvers routinely solve LPs with millions of variables.

\section*{LP solvers: basic implementations}

\section*{Ex. 1: OR-Objects Java library}
```

import drasys.or.mp.*;
import drasys.or.mp.lp.*;
public class LPDemo
{
public static void main(String[] args) throws Exception
{
Problem prob = new Problem(3, 2);
prob.getMetadata().put("lp.isMaximize", "true");
prob.newVariable("x1").setObjectiveCoefficient(13.0);
prob.newVariable("x2").setObjectiveCoefficient(23.0);
prob.newConstraint("corn").setRightHandSide( 480.0);
prob.newConstraint("hops").setRightHandSide( 160.0);
prob.newConstraint("malt").setRightHandSide(1190.0);
prob.setCoefficientAt("corn", "x1", 5.0);
prob.setCoefficientAt("corn", "x2", 15.0);
prob.setCoefficientAt("hops", "x1", 4.0);
prob.setCoefficientAt("hops", "x2", 4.0);
prob.setCoefficientAt("malt", "x1", 35.0);
prob.setCoefficientAt("malt", "x2", 20.0);
DenseSimplex lp = new DenseSimplex(prob);
System.out.println(lp.solve());
System.out.println(lp.getSolution());
}
}

```

Ex. 2: MS Excel (!)

\section*{LP solvers: commercial strength}

AMPL. [Fourer, Gay, Kernighan] An algebraic modeling language.
CPLEX solver. Industrial strength solver.


\section*{History}
1939. Production, planning. [Kantorovich]
1947. Simplex algorithm. [Dantzig]
1950. Applications in many fields.
1979. Ellipsoid algorithm. [Khachian]
1984. Projective scaling algorithm. [Karmarkar]
1990. Interior point methods.
- Interior point faster when polyhedron smooth like disco ball.
- Simplex faster when polyhedron spiky like quartz crystal.


200x. Approximation algorithms, large scale optimization.
> brewer's problem
> simplex algorithm
Implementation
Dlinear programming

\section*{Linear programming}

Linear "programming"
- process of formulating an LP model for a problem
- solution to LP for a specific problem gives solution to the problem
1. Identify variables
2. Define constraints (inequalities and equations)
3. Define objective function

\section*{Examples:}
- shortest paths
- maxflow

- bipartite matching
-
\(\bullet\)
\(\bullet\)
- [ a very long list ]

\section*{Single-source shortest-paths problem (revisited)}

Given. Weighted digraph, single source s.

Distance from s to \(v\) : length of the shortest path from \(s\) to \(v\).

Goal. Find distance (and shortest path) from s to every other vertex.


LP formulation of single-source shortest-paths problem
One variable per vertex, one inequality per edge.
\begin{tabular}{cc}
\begin{tabular}{c} 
minimize \\
subject \\
to the \\
constraints
\end{tabular} & \(x_{s}+9 \leq x_{2}\) \\
& \(x_{s}+14 \leq x_{6}+15 \leq x_{7}\) \\
& \(x_{2}+24 \leq x_{3}\) \\
& \(x_{3}+2 \leq x_{5}\) \\
& \(x_{3}+19 \leq x_{t}\) \\
shortest path from & \(x_{4}+6 \leq x_{3}\) \\
source to i & \(x_{4}+6 \leq x_{t}\) \\
interpretation: & \(x_{5}+11 \leq x_{4}\) \\
& \(x_{5}+16 \leq x_{t}\) \\
& \(x_{6}+18 \leq x_{3}\) \\
& \(x_{6}+30 \leq x_{5}\) \\
& \(x_{6}+5 \leq x_{7}\) \\
& \(x_{7}+20 \leq x_{5}\) \\
& \(x_{7}+44 \leq x_{t}\) \\
& \(x_{s}=0\) \\
& \(x_{2}, \ldots, x_{t} \geq 0\)
\end{tabular}


LP formulation of single-source shortest-paths problem
One variable per vertex, one inequality per edge.
\begin{tabular}{cc}
\begin{tabular}{c} 
minimize \\
subject \\
to the \\
constraints
\end{tabular} & \(x_{s}+9 \leq x_{2}\) \\
& \(x_{s}+14 \leq x_{6}\) \\
& \(x_{s}+15 \leq x_{7}\) \\
& \(x_{2}+24 \leq x_{3}\) \\
& \(x_{3}+2 \leq x_{5}\) \\
& \(x_{3}+19 \leq x_{t}\) \\
shortest path from & \(x_{4}+6 \leq x_{3}\) \\
source to i & \(x_{4}+6 \leq x_{t}\) \\
interpretation: & \(x_{5}+11 \leq x_{4}\) \\
& \(x_{5}+16 \leq x_{t}\) \\
& \(x_{6}+18 \leq x_{3}\) \\
& \(x_{6}+30 \leq x_{5}\) \\
& \(x_{6}+5 \leq x_{7}\) \\
& \(x_{7}+20 \leq x_{5}\) \\
& \(x_{7}+44 \leq x_{t}\) \\
& \(x_{s}=0\) \\
& \(x_{2}, \ldots, x_{+} \geq 0\)
\end{tabular}


\section*{Maxflow problem}

Given: Weighted digraph, source s, destinationt.

Interpret edge weights as capacities
- Models material flowing through network
- Ex: oil flowing through pipes
- Ex: goods in trucks on roads
- [many other examples]


Flow: A different set of edge weights
- flow does not exceed capacity in any edge
- flow at every vertex satisfies equilibrium [ flow in equals flow out ]

Goal: Find maximum flow from s to \(\dagger\)


LP formulation of maxflow problem
One variable per edge.
One inequality per edge, one equality per vertex.


LP formulation of maxflow problem
One variable per edge.
One inequality per edge, one equality per vertex.


Maximum cardinality bipartite matching problem

Given: Two sets of vertices, set of edges (each connecting one vertex in each set)

\section*{Matching: set of edges} with no vertex appearing twice

Interpretation: mutual preference constraints
- Ex: people to jobs
- Ex: medical students to residence positions
- Ex: students to writing seminars
- [many other examples]
\begin{tabular}{l|l} 
Alice & Adobe \\
Adobe, Apple, Google & Alice, Bob, Dave \\
Bob & Apple \\
Adobe, Apple, Yahoo & Alice, Bob, Dave \\
Carol & Google \\
Google, IBM, Sun & Alice, Carol, Frank \\
Dave & IBM \\
Adobe, Apple & Carol, Eliza \\
Eliza & Sun \\
IBM, Sun, Yahoo & Carol, Eliza, Frank \\
Frank & Yahoo \\
Google, Sun, Yahoo & Bob, Eliza, Frank
\end{tabular}

Example: Job offers

Goal: find a maximum cardinality matching


LP formulation of maximum cardinality bipartite matching problem
One variable per edge, one equality per vertex.
interpretation: An edge is in the matching iff \(x_{i j}=1\)
\[
x_{A O}+x_{A 1}+x_{A 2}+x_{B 0}+x_{B 1}+x_{B 5}
\]
maximize
\[
+x_{C 2}+x_{C 3}+x_{C 4}+x_{D 0}+x_{D 1}
\]
\[
+X_{E 3}+X_{E 4}+X_{E 5}+X_{F 2}+X_{F 4}+X_{F 5}
\]
subject \(\dagger\)
to the
constraints



Crucial point: not always so lucky!

Theorem. [Birkhoff 1946, von Neumann 1953]
All extreme points of the above polyhedron have integer (0 or 1) coordinates
Corollary. Can solve bipartite matching problem by solving LP

LP formulation of maximum cardinality bipartite matching problem
One variable per edge, one equality per vertex.
interpretation: An edge is in the matching iff \(x_{i j}=1\)
maximize
to the
constraints

\[
\begin{aligned}
& \text { solution } \\
& \qquad \begin{aligned}
x_{A 1} & =1 \\
x_{B 5} & =1 \\
x_{C 2} & =1 \\
x_{D O} & =1 \\
x_{E 3} & =1 \\
x_{F 4} & =1
\end{aligned} \\
& \text { all other } x_{i j}=0
\end{aligned}
\]

\[
\begin{aligned}
& x_{A O}+x_{A 1}+x_{A 2}+x_{B O}+x_{B 1}+x_{B 5} \\
& +x_{C 2}+x_{C 3}+x_{C 4}+x_{D 0}+x_{D 1} \\
& +X_{E 3}+X_{E 4}+X_{E 5}+X_{F 2}+X_{F 4}+X_{F 5} \\
& x_{B 0}+x_{B 1}+x_{B 5}=1 \\
& x_{C 2}+x_{C 3}+x_{C 4}=1 \\
& x_{D O}+x_{D 1}=1 \\
& X_{E 3}+X_{E 4}+X_{E 5}=1 \\
& X_{F 2}+X_{F 4}+X_{F 5}=1 \\
& x_{A O}+x_{B O}+x_{D O}=1 \\
& x_{A 1}+x_{B 1}+x_{D 1}=1 \\
& x_{A 2}+x_{C 2}+x_{F 2}=1 \\
& x_{C 3}+x_{E 3}=1 \\
& X_{C 4}+X_{E 4}+X_{F 4}=1 \\
& X_{B 5}+X_{E 5}+X_{F 5}=1 \\
& \text { all } x_{i j} \geq 0
\end{aligned}
\]

Linear programming perspective
Got an optimization problem?
ex: shortest paths, maxflow, matching, . . . [many, many, more]

Approach 1: Use a specialized algorithm to solve it
- Algs in Java
- vast literature on complexity
- performance on real problems not always well-understood

Approach 2: Use linear programming
- a direct mathematical representation of the problem often works
- immediate solution to the problem at hand is often available
- might miss specialized solution, but might not care
```

[cos226:tucson] ~> ampl
AMPL Version 20010215 (SunOS 5.7)
Got an LP solver? Learn to use it!

LP: the ultimate problem-solving model (in practice)

Fact 1: Many practical problems are easily formulated as LPs
Fact 2: Commercial solvers can solve those LPs quickly

More constraints on the problem?

- specialized algorithm may be hard to fix $\longleftarrow$ Ex. Mincost maxflow and
- can just add more inequalities to LP

New problem?

- may not be difficult to formulate LP
- may be very difficult to develop specialized algorithm

Today's problem?

- similar to yesterday's
- edit tableau, run solver

Ex. Airline scheduling
[ similar to vast number of other business processes ]

Too slow?

- could happen
- doesn't happen

Ultimate problem-solving model (in theory)

Is there an ultimate problem-solving model?

- Shortest paths
- Maximum flow
- Bipartite matching
- . . .
- Linear programming
- .
-.
- NP-complete problems
- 
- .
- .


Does $P=N P$ ? No universal problem-solving model exists unless $P=N P$.

LP perspective

LP is near the deep waters of intractability.
Good news:

- LP has been widely used for large practical problems for 50+ years
- Existence of guaranteed poly-time algorithm known for $25+$ years.

Bad news:

- Integer linear programming is NP-complete
- (existence of guaranteed poly-time algorithm is highly unlikely).
- [stay tuned]


An unsuspecting MBA student transitions to the world of intractability with a single mouse click.

